Studies on Fused Pyrimidine Derivatives. Part 13. ${ }^{1}$ Thermal Ene Reaction of 6-(Alk-2-enylamino)-5-[(substituted imino)methyl]-1,3-dimethylpyrimidine-2,4(1H,3H)-diones leading to Pyrimido[4,5-b]azepines

Tomonori Inazumi, ${ }^{\text {a }}$ Etsuko Harada, ${ }^{a}$ Takashi Mizukoshi, ${ }^{a}$ Yoshiaki Kuroki, ${ }^{a}$ Akikazu Kakehi ${ }^{b}$ and Michihiko Noguchi ${ }^{*, a}$
${ }^{a}$ Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan
${ }^{b}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan

6-(Alk-2-enylamino)-1,3-dimethyl-5-[(substituted imino) methyl]pyrimidine-2,4(1H,3H)-diones, obtained from 6-(alk-2-enylamino)-5-formyl-1,3-dimethylpyrimidine-2,4(1H,3H)-diones 1 and primary amines, participate in the intramolecular ene reaction (Type III) leading to pyrimido[4,5-b]azepine derivatives.

In the preceding paper, ${ }^{1}$ we reported an interesting cyclisation of 6-(alk-2-enylamino)-5-formyl-1,3-dimethylpyrimidine$2,4(1 H, 3 H)$-diones 1 with N-unsubstituted amino acid esters leading to pyrimido[4,5-b]azepine derivatives. On the other hand, a similar reaction of formyl diones 1 with N-substituted amino acid esters afforded the ordinary cyclisation products derived from azomethine ylide intermediates \mathbf{B} (Scheme 1). The imine \mathbf{A}, formed by the condensation of compound 1 with N-unsubstituted amino acid esters, was considered as an intermediary product of this cyclisation. A similar type of reaction profile was observed in the decarboxylative condensation of compounds 1 with N-unsubstituted and N-substituted amino acids. However, the mechanistic elucidation for the cyclisation was limited for the following reasons; (1) in every case imine \mathbf{A} has not been characterised as yet; (2) the reaction of compounds 1 with N-unsubstituted amino acids was performed sluggishly. Prolonged heating of reaction mixtures consequently provided a considerable formation of unidentified products including polymeric materials; (3) the reaction of compounds 1 with N-unsubstituted amino acid esters gave pyrimidoazepine derivatives in excellent yields. However, most of the amino acid esters were obtained by treatment of the
corresponding hydrochlorides with a slight excess of the base in situ. This resulted in an ambiguity in the discussion of the reaction conditions (acidic, basic or neutral?).

In order to elucidate the pathway and to extend the scope of this cyclisation, we examined the reaction of formyl diones 1 with primary and secondary amines 2 . This paper describes the successful utilisation of the cyclisation from 1 and primary amines and the confirmation of an imine as an intermediate. An intramolecular ene process for this cyclisation will be also described.

Results and Discussion

Reaction of 6-(N -allylbenzylamino)-5-formyl-1,3-dimethyl-pyrimidine-2,4($1 H, 3 H$)-dione 1a with aniline 2a in toluene under reflux for 5 h afforded 5-anilino-9-benzyl-1,3-dimethyl-6,9-dihydro-5 H -pyrimido[4,5-b]azepine-2,4(1H,3H)-dione 3a in quantitative yield. The structure of compound 3 a was confirmed on the basis of its elemental analysis and spectral data compared with those related compounds. ${ }^{1}$ The effect of the solvent utilised in the cyclisation was also examined; heating of substrates 1a and 2a in 1,4-dioxane (5 h ; quantitatively), in

Scheme 1 Reagents and conditions: i, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, toluene, reflux; ii, $\mathrm{MeNHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, toluene, reflux
benzene ($24 \mathrm{~h} ; 96 \%$), and in acetonitrile ($55 \mathrm{~h} ; 93 \%$) gave compound 3 a in satisfactory yields. Similar reactions of 1 a with isobutyl- (2b), cyclohexyl-(2c), benzyl- (2d), and furfuryl-amine (2e) gave pyrimidoazepines $\mathbf{3 b - e}$ in good to excellent yields (Scheme 2). These results are summarised in Table 1.

Scheme 2 Reagents and conditions: i, $\mathbf{R}^{2} \mathrm{NH}_{2}$ 2, toluene, reflux
The reaction of compound 1 la with secondary amines, N methylaniline $\mathbf{2 f}$ and piperidine $\mathbf{2 g}$, was also examined; the former reaction resulted in the recovery of starting materials. The replacement of the amino moiety at the 6 -position was observed in the latter case, leading to 5 -formyl-1,3-dimethyl-6-piperidinopyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione 4 (Scheme 3).

Scheme 3 Reagent and conditions: i, piperidine 2g, toluene, reflux
These findings implied that the use of primary amines, including N-unsubstituted α-amino acid derivatives, was requisite for construction of the pyrimidoazepine products. From the results in the preceding paper, ${ }^{1}$ we suggested the intermediacy of the imine 5 , formed by the condensation of substrate $\mathbf{1 a}$ and primary amines $\mathbf{2 a - e}$, in the azepine-ring cyclisation. Imine 5, however, could not be obtained as a product in the above reaction runs. Therefore, we attempted to detect the imine as intermediate; on storage of a benzene solution of substrates 1a and 2a at room temperature for 12 h , imine 5 a was formed in 72% yield together with unchanged starting materials 1a and 2a. The reaction mixture was heated

Table 1 Reaction of formyl dione 1a with primary amines $\mathrm{R}^{2} \mathrm{NH}_{2} 2$

Run	R^{2}	$\begin{aligned} & (T / \mathrm{h}) \\ & \text { Time } \end{aligned}$	Products (Yield ${ }^{a} / \%$)
1	a Ph	5	3a (quant)
2	b Bu ${ }^{\text {i }}$	3	3b (98)
3	c Cyclohexyl	1	3c (90)
4	d $\mathrm{CH}_{2} \mathrm{Ph}$	6	$\mathbf{3 d}^{\text {b }}$ (quant)
5	e Furfuryl	26	3e (78)

${ }^{a}$ Isolated yield. ${ }^{b}$ Known compound. See ref. 1.
under reflux for 20 h to give compound 3a in 93% yield (Scheme 4). Although the formation of imine intermediate 5a

Scheme 4 Intermediary of imine 5a in the preparation of bicycle 3a from starting materials 1a and 2a
in acetonitrile under similar conditions was slower than that in benzene, an apparent solvent effect in the conversion of imine 5 a into bicycle 3a was not found in either solvent. The use of toluene- p-sulfonic acid (PTSA) as a dehydrating catalyst facilitated both the imine formation and the cyclisation, and afforded a mixture of compound $\mathbf{3 a}$ and the 2,4-ethanopyrimido $[4,5-d$] pyrimidine 6 a (Table 2).
Two diastereoisomeric pyrimidoazepine derivatives were formed by the reaction of 6 - $\{N$-benzyl- $[(E)$-but-2-enylamino $]\}$ 1b and 6 - $\{N$-benzyl[(E)-cinnamyl $]$ amino $\}$ - 5 -formyl-1,3-di-methylpyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione 1 c with N -unsubstituted amino acid derivatives. ${ }^{1}$ However, the stereochemistry between positions 5 and 6 in the pyrimido[4,5-b]azepine products could not be established.

Our next concern, therefore, was directed toward the stereoselectivity of the cylisation. The reactions of formyl diones 1b, 1c, and 6-[(E)-N-benzyl-3-(ethoxycarbonyl)prop-2-enylamino] substrate $1 \mathbf{d}$ with primary amine $\mathbf{2 a}$ and/or $\mathbf{2 b}$ in some solvents were examined (Scheme 5). Pyrimido [4,5-b]azepines 7a and 7b, $\mathbf{8 a}$ and $\mathbf{8 b}$, and 9a were formed as inseparable mixtures of two isomers in the reaction of formyl dione $\mathbf{1 b}$ with primary amines $\mathbf{2 a}$ and $\mathbf{2 b}$, formyl dione $\mathbf{1 c}$ with amines $\mathbf{2 a}$ and $\mathbf{2 b}$, and formyl ester 1d with amine 2a, respectively (Table 3). The structures of these products were established by elaborate analyses of their ${ }^{1} \mathrm{H}$ NMR spectra.

The isomers could be easily distinguished from each other by the signal patterns of olefin protons at the 7-position; those of the major products were observed as double double doublets ($J \sim 2,2$ and 9 Hz), while those of the minor products were observed as double doublets ($J \sim 6$ and 9 Hz). The methine protons at the 5 -position of both isomers were observed between $\delta 3.4$ and 5.9 as broad signals or as double doublet with small coupling constants ($J<3 \mathrm{~Hz}$) after the treatment of deuterioxide. Therefore, the configurations between the 5 -

Table 2 Reaction of compound 1a with aniline 2a

Run	Solvent	PTSA	Step 1 time (t / h)	Proportions ${ }^{\text {a }}$ of		Yield ${ }^{b}$ of products (\%)	$\frac{\text { Ratio }^{a} \text { of }}{3 \mathrm{a}: 6 \mathrm{a}}$
				1a:5a:3a	time (t / h)		
1	Benzene	-	12	28:72:0	20	93	100:0
2	Benzene	+	10	14:72:14	8	73	24:76
3	MeCN	-	12	61:39:0	20	90	100:0
4	MeCN	+	10	17:72:11	8	87	44:56

[^0]Table 3 Reaction of formyl diones $\mathbf{1 b}$-d with primary amines $\mathbf{2 a}$ and $\mathbf{2 b}$

Run	R^{1}	R^{2}	Solvent	Time (t/h)	Products (Yield ${ }^{a}: \%$)	$\frac{\text { Ratio }^{b}}{\text { cis:trans }}$
1	Me	Ph	toluene	5	7a (92)	88:12
2	Me	Ph	benzene	12	7a (85)	88:12
3	Me	Ph	MeCN	48	7 a (92)	90:10
4	Me	Bu ${ }^{\text {i }}$	toluene	5	7b (78)	81:19
5	Ph	Ph	toluene	5	8a (86)	66:34
6	Ph	$B u^{i}$	toluene	5	8b (85)	74:26
7	Ph	$B u^{i}$	benzene	15	8b (96)	74:26
8	Ph	$\mathrm{Bu}^{\text {i }}$	MeCN	48	8b (86)	74:26
9	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	toluene	5	9a (72)	90:10

${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures.

1b $R^{\prime}=M e$
1c $\mathrm{R}^{\prime}=\mathrm{Ph}$
1d $\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Et}$
$R^{2} \mathrm{NH}_{2} \left\lvert\, \begin{aligned} & 2 \mathrm{l}, \mathrm{R}^{2}=\mathrm{Ph} \\ & 2 \mathrm{~b}, \mathrm{R}^{2}=\mathrm{Bu}\end{aligned}\right.$
$+$

$7 \mathrm{R}^{1}=\mathrm{Me}$
$9 \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$
Scheme 5 Reagents: i, $\mathbf{R}^{2} \mathrm{NH}_{2}\left(\mathbf{2 a}, \mathbf{R}^{\mathbf{2}}=\mathrm{Ph} ; \mathbf{2 b}, \mathrm{R}^{\mathbf{2}}=\mathrm{Bu}^{\mathrm{i}}\right)$
and 6-position could not be determined solely on the basis of their coupling constants.
The signal patterns of products $\mathbf{7}$ and $\mathbf{8}$ were available to the structure determinations; the methine protons at the 5 -position of the minor products were observed at higher field ($\Delta \delta>0.8$ ppm) than those of the major products due to the shielding effect of the methyl or phenyl group at the 6-position. In product 8b, the protons assigned to the isobutylamino group at the 5 -position of the major products were shifted to higher field than those of the minor products, also due to the phenyl group at the 6 -position. From these findings, the stereochemistry at the 6 - and 5 -position of the major products was deduced to be cis and that of the minor ones to be trans, respectively.
cis-Selectivity in the products might refer to the nature of this cyclisation. The electronic features of the substituents \mathbf{R}^{1} (i.e., methyl group for compound 1b and ethoxycarbonyl group for compound 1d) at the alkenylamino moiety provided little effect on the selectivity. The cis-selectivity declined with increasing bulk of both substituents of the amine and alkenyl moieties.
For construction of the azepine ring from the imine \mathbf{C}, two plausible pathways are demonstrated in Scheme 6. The first one is an intramolecular ene reaction (so-called intramolecular Type III reaction) ${ }^{2 a}$ in C. Another is a 1,7 -electrocyclic reaction ${ }^{3}$ of ylide intermediate \mathbf{E}, which is formed by a 1,6 -shift of the allylic proton adjacent to the amino nitrogen.

C

D-1

F(5, 6-cis)

C

E

F
Scheme 6

The generation of 1,5 -dipoles by a similar 1,6-hydrogen shift of (1-pyrrolidino)buta-1,3-dienes and their subsequent electrocyclic ring closure leading to pyrrolizines is known. ${ }^{4}$ Therein, the rate of the 1,6 -hydrogen shift and the stereoselectivity of the cyclisation process were substantially dependent upon the polarity of the solvent used. In the present work, the cyclisation leading to azepines exhibited no apparent solvent effects on its stereoselectivity. The reaction of 5 -formyl-1,3-dimethyl-6-piperidinopyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione 4 with (or without) aniline 2 a in refluxing toluene gave no cyclisation products, due to the 1,5 -dipole. From these findings, we propose a concerted ene-reaction-like mechanism for this construction of an azepine ring.
In order to obtain a better understanding of the origin of the stereoselectivity, the transition state \mathbf{D} in the concerted ene process was investigated by utilising molecular models. Owing to the highly ordered transition state only a boat-shaped one (D1) seems to be possible, which affords the 5,6 -cis azepine ring system \mathbf{F} (Scheme 6). We do not as yet have a good explanation
for the concerted process leading to 5,6-trans-azepine ring formation.

Few examples of Type III reactions have been reported so far $^{2 a}$ and thermal ene reactions utilising imine enophiles ${ }^{5}$ are also relatively rare compared with those of carbonyl enophiles. It should be emphasised that these thermal ene reactions of 6-(alk-2-enylamino)-5-[(substituted imino)methyl]pyrimidine$2,4(1 H, 3 H)$-diones \mathbf{C} proceed easily under mild conditions. We suggest that the electronic features of pyrimidine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$ dione systems are responsible for these convenient ene reactions. Further investigations on the reaction pathway are in progress and some examples of this cyclisation will be reported in due course.

Experimental

For general details of apparatus and procedures, see the preceding paper. ${ }^{1}$

Splitting patterns in ${ }^{1} \mathrm{H}$ NMR spectra are indicated as s , singlet; d, doublet; m, multiplet; br, broad signal; and ov, overlapping with each other.

Reaction of Formyl Dione 1a with Aniline 2a; Typical Procedure.-A solution of compound $\mathbf{1 a}(0.366 \mathrm{~g}, 1.17 \mathrm{mmol})$ and aniline 2 a ($0.12 \mathrm{~cm}^{3}, 1.32 \mathrm{mmole}$) in toluene ($5 \mathrm{~cm}^{3}$) was heated under reflux for 5 h . The mixture was concentrated to dryness. The residue was subjected to column chromatography on silica gel with hexane-ethyl acetate (4:1) as eluent to give compound 3 a (0.455 g , quantitatively).

5-Anilino-9-benzyl-1,3-dimethyl-6,9-dihydro-5 H -pyrimido-[4,5-b]azepine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 3a was obtained as prisms from ethanol; m.p. 222-224 ${ }^{\circ} \mathrm{C}$ (Found: C, 71.2; N, 6.3; N, 14.3. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.11 ; \mathrm{H}, 6.23 ; \mathrm{N}, 14.42 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1695$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $2.46\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.39$ and 3.45 (each 3 H , each s, 1 - and $3-\mathrm{Me}), 3.65\left(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}\right.$; exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.31$ and 4.25 (each 1 H , each d, $J 14.0, \mathrm{CH}_{2} \mathrm{Ph}$), $4.74(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}$), 5.32 $(1 \mathrm{H}, \mathrm{br}, 7-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.9,8-\mathrm{H})$ and $6.25,6.61$ and 7.0-7.4 (total $10 \mathrm{H}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 28.6$ (1-Me), 32.7 (C-6), $35.5(3-\mathrm{Me}), 45.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2(\mathrm{C}-5), 106.7,108.0(\mathrm{C}-7$ and $-4 a), 113.3,117.0,128.7,129.0,129.3,129.8,130.0,135.2$ and 146.4 (C-8 and Ph C), 152.2 (C-9a), 153.0 (C-2) and 162.6 (C-4); $m / z 388\left(\mathrm{M}^{+}\right)$.
9-Benzyl-5-isobutylamino-1,3-dimethyl-6,9-dihydro-5Hpyrimido $[4,5-\mathrm{b}]$ azepine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 3 b was obtained as needles from hexane-ethyl acetate; m.p. $150-152^{\circ} \mathrm{C}$ (Found: C, 68.5; $\mathrm{H}, 7.6 ; \mathrm{N}, 15.3, \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $68.45 ; \mathrm{H}, 7.66 ; \mathrm{N}$, $15.21 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1700$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270$ MHz) 0.71 and 0.75 (each 3 H , each d, J6.6, CHMe C_{2}), 1.35 (1 $\mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{M}_{2}$), $1.95(1 \mathrm{H}, \mathrm{ov}, \mathrm{NH}), 1.97\left(2 \mathrm{H}, \mathrm{ov}, \mathrm{NHCH}_{2}\right)$, $2.35\left(2 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}_{2}\right), 3.36$ and 3.47 (each 3 H , each s, 1 - and 3$\mathrm{Me}), 4.25$ and 4.33 (each 1 H , each d, $J 14.0, \mathrm{CH}_{2} \mathrm{Ph}$), $4.3(1 \mathrm{H}$, br, $5-\mathrm{H}), 4.76(1 \mathrm{H}$, ddd, $J 4.8,9.2$ and $9.5,7-\mathrm{H}), 5.89(1 \mathrm{H}$, ddd, $J 1.5,1.8$, and $9.5,8-\mathrm{H})$ and $7.2-7.4(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz})$ 20.3 and $20.8(\mathrm{CHMe} 2), 28.1(1-\mathrm{Me}), 28.5\left(\mathrm{CHMe}_{2}\right)$, $32.6(\mathrm{C}-6)$, $35.2(3-\mathrm{Me}), 50.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.7\left(\mathrm{NCH}_{2}\right), 58.1(\mathrm{C}-5), 108.0$ and 108.6 (C-7 and -4a), 128.5, 128.6, 128.9, 129.1 and 135.4 (C-8 and Ph C), 151.2 (C-9a), 153.2 (C-2) and 162.9 (C-4); $m / z 368$ $\left(\mathrm{M}^{+}\right)$.

9-Benzy-5-cyclohexylamino-6,9-dihydro-5H-pyrimido[4,5-b]-azepine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 3 c was obtained as prisms from hexane-benzene; m.p. ${ }^{130-132}{ }^{\circ} \mathrm{C}$ (Found: C, 70.3; H, 7.7; N, 14.3. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.02 ; \mathrm{H}, 7.67 ; \mathrm{N}, 14.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1695$ and $1635(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $0.8,1.0-1.2,1.4-1.7$ and 2.15 (total 12 H , cyclohexyl- H and $\mathrm{NH}), 2.30\left(2 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}_{2}\right), 3.35$ and 3.46 (each 3 H , each s, 1 and $3-\mathrm{Me}$), 4.27 and 4.39 (each 1 H , each d, J14.0, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.6 and 4.8 (total 2 H , ov, $5-\mathrm{and} 7-\mathrm{H}), 5.90(1 \mathrm{H}$, ddd, $J 1.5,1.8$ and
9.9, 8-H) and 7.2-7.4 ($5 \mathrm{H}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 25.1,25.2,26.1$, 33.2, 33.4 and 54.1 (cyclohexyl C), 28.5 (1-Me), 31.4 (C-6), 35.7 (3-Me), $46.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.0(\mathrm{C}-5), 107.2$ and $107.4(\mathrm{C}-7$ and $-4 a), 128.6,129.2$ and 135.3 (C-8 and Ph C), 151.7 (C-9a), 153.2 (C-2) and 162.7 (C-4); m/z 394 (M^{+}).

9-Benzyl-5-furfurylamino-1,3-dimethyl-6,9-dihydro-5H-pyrimido $[4,5-\mathrm{b}]$ azepine $-2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 3 e was obtained as prisms from hexane-benzene; m.p. 121-122 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.2 ; $\mathrm{H}, 6.1 ; \mathrm{N}, 14.0 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.33 ; \mathrm{H}, 6.16 ; \mathrm{N}$, 14.28%); $v_{\text {max }} / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 1700$ and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 1.60(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 2.36(2 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}), 3.25$ and 3.35 [each 1 H , each d, $J 14.0, \mathrm{NHCH}_{2}$ furyl(2)], 3.35 and 3.47 (each 3 H , each s, 1- and 3-Me), 4.26 and 4.35 (each 1 H , each d, J $\left.13.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{ddd}, J 4.0,9.2$, and $9.9,7-\mathrm{H}), 5.89(1 \mathrm{H}$, ddd, $J 1.5,1.8$ and $8.9,8-\mathrm{H})$ and $6.0-7.3$ (total $8 \mathrm{H}, \mathrm{Ph}$ and furyl-H); $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 28.6$ (1-Me), 32.9 (C-6), $35.5(3-\mathrm{Me}), 44.1\left[\mathrm{CH}_{2}\right.$ furyl(2)], $49.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2$ (C-5), 107.2 and 108.0 (C-7 and -4a), 128.5 (C-8), 110.1, 141.4 and 151.4 (furyl C), 128.7, 128.8, 129.2 and 135.1 (Ph C), 153.2 (C-9a), 153.9 (C-2) and $162.8(\mathrm{C}-4) ; m / z 392\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-2,4-dioxo-6-piperidino-1,2,3,4-tetrahydro-pyrimidine-5-carbaldehyde 4 was obtained as needles from hexane-benzene; m.p. $133-135^{\circ} \mathrm{C}$ (Found: C, 57.5; H, 6.8; N, 16.8. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $57.35 ; \mathrm{H}, 6.82 ; \mathrm{N}, 16.72 \%$); $\delta_{\mathrm{H}}(270 \mathrm{MHz})$ 1.3-1.9 ($6 \mathrm{H}, \mathrm{ov}, \mathrm{CH}_{2}$), $2.5-3.4\left(4 \mathrm{H}, \mathrm{ov}, \mathrm{CH}_{2}\right)$, 3.00 and 3.13 (each 3 H , each s, 1- and 3-Me) and 9.45 (1 H , s, CHO).

A solution of substrates $\mathbf{1 a}(1.0 \mathrm{mmol}), \mathbf{2 a}(1.2 \mathrm{mmol})$, and two crystals of PTSA in benzene $\left(5 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 10 h and the reaction mixture was concentrated to dryness at the same temperature. Its NMR measurement showed it to be 14:72:14 mixture of starting compound 1a, imine 5a and pyrimidoazepine 3a. The benzene solution ($5 \mathrm{~cm}^{3}$) of the reaction mixture was heated under reflux for 8 h . After work-up, a $24: 76$ mixture of products 3 a and $\mathbf{6 a}$ $(0.282 \mathrm{~g}, 73 \%)$ was obtained. Flash chromatography of the mixture on silica gel with hexane-ethyl acetate $(5: 1)$ as eluent afforded separate products 3a and 6a.

6-(N-Allylbenzylamino)-1,3-dimethyl-5-[(phenylimino)-methyl]pyrimidine-2,4(1H,3H)-dione 5a; $\delta_{\mathrm{H}}(270 \mathrm{MHz})$ 3.24 and 3.28 (each 3 H , each s, 1 - and 3-Me), 3.63 ($2 \mathrm{H}, \mathrm{d}, J 6.5$ $\left.\mathrm{NCH}_{2} \mathrm{CH}=\right), 4.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.0\left(2 \mathrm{H}, \mathrm{ov},=\mathrm{CH}_{2}\right), 5.74$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 6.4-7.4(10 \mathrm{H}, \mathrm{Ph})$ and $8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$.

1-Benzyl-6,8-dimethyl-3-phenyl-1,2,3,4-tetrahydro-2,4-ethanopyrimido $[4,5-\mathrm{d}]$ pyrimidine- $5,7(6 \mathrm{H}, 8 \mathrm{H})$-dione 6 a was obtained as prisms from hexane-benzene; m.p. $161-162^{\circ} \mathrm{C}$ (Found: C, 71.2; $\mathrm{H}, 6.2 ; \mathrm{N}, 14.4 . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 71.11; $\mathrm{H}, 6.23$; $\mathrm{N}, 14.42 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1685$ and $1630(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ 2.1 and 2.3 (total 4 H , ov, $9-$ and $10-\mathrm{H}_{2}$), 3.24 and 3.38 (each 3 H , each s, 6- and 8-Me), 4.15 and 4.27 (each 1 H , each d, J $17.2, \mathrm{CH}_{2} \mathrm{Ph}$), $4.96(1 \mathrm{H}, \mathrm{d}, J 3.3,4-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}, J 6.6,2-\mathrm{H})$ and $6.8-7.5(10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz}) 27.8(6-\mathrm{Me}), 31.6$ and 33.5 (C-9 and -10), 35.2 ($8-\mathrm{Me}$), $53.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.3$ (C-4), 75.6 (C-2), 98.4 (C-4a), 117.4, 120.4, 126.4, 129.1, 129.4, 129.8, 135.9 and $145.7(\mathrm{PhC}), 152.6$ and $152.7(\mathrm{C}-7$ and $-8 \mathrm{a})$ and 161.1 (C-5); $m / z 426\left(\mathrm{M}^{+}\right)$and $335\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$.

5-Anilino-9-benzyl-1,3,6-trimethyl-6,9-dihydro-5H-pyrimido-[4,5-b]azepine-2,4 $(1 \mathrm{H}, 3 \mathrm{H})$-dione 7 a was obtained as prisms from hexane-benzene; m.p. $208-210^{\circ} \mathrm{C}$ (Found: C, $71.8 ; \mathrm{H}$, 6.5; $\mathrm{N}, 14.1 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.62 ; \mathrm{H}, 6.51 ; \mathrm{N}$, 13.92%); $v_{\text {max }} / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1690$ and 1620 (CO); m/z $402\left(\mathrm{M}^{+}\right)$.

Compound 7a (major): $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.00(3 \mathrm{H}, \mathrm{d}, J 7.3$, $6-\mathrm{Me}$), $2.75(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.40$ and 3.44 (each 3 H , each s, $1-$ and $3-\mathrm{Me}), 3.49\left(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{NH}\right.$; exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.28$ (2 H , br s, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.46(1 \mathrm{H}$, ddd, $J 1.5,2.2$ and $9.8,7-\mathrm{H}$), $5.10\left(1 \mathrm{H}\right.$, ddd $, J 1.5,2.2$, and $8.8,5-\mathrm{H}$; changed to dd after $\mathrm{D}_{2} \mathrm{O}$ treatment, $J 1.5$ and 2.2), $5.90(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $9.8,8-\mathrm{H})$ and
6.3, 6.6 and $7.1-7.3$ (total $10 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.9(6-\mathrm{Me})$, 28.6 (1-Me), 35.6 (3-Me), 37.4 (C-6), $50.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2$ (C-5), 108.5 (C-7), 112.2 (C-4a), 113.1, 116.4, 127.3, 128.6, 129.1, 129.3, 129.4, 135.1 and 147.3 (C-8 and Ph C), 151.9 (C-9a), 153.0 (C-2) and 162.6 (C-4).

Isomer 7a (minor): $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.97(3 \mathrm{H}, \mathrm{d}, J 7.3,6-\mathrm{Me})$, $2.43(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.38(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{NH}$; exchanged with $\mathrm{D}_{2} \mathrm{O}$), 3.33 and 3.44 (each 3 H , each s, 1 - and $3-\mathrm{Me}$), $4.22(3 \mathrm{H}$, ov, $5-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.92(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $7.3,7-\mathrm{H}), 5.90$ $(1 \mathrm{H}$, ov, $8-\mathrm{H})$ and $6.1,6.5$ and $7.1-7.4(\mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ (assigned signals) $15.9,28.3,34.2,36.2,53.8,57.4,103.6,113.0$, 118.9 and 129.7.

9-Benzyl-5-isobutylamino-1,3,6-trimethyl-6,9-dihydro-5Hpyrimido $[4,5-\mathrm{b}]$ azepine- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione 7 b was obtained as plates from hexane; m.p. $122-123^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.9 ; \mathrm{H}, 7.7 ; \mathrm{N}$, 14.6. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 69.08 ; \mathrm{H}, 7.91 ; \mathrm{N}, 14.65 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1690$ and $1625(\mathrm{CO}) ; m / z 382\left(\mathrm{M}^{+}\right)$.

Isomer 7b (major); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.74$ and 0.76 (each 3 H , each d, $J 6.1, \mathrm{CH} \mathrm{Me}_{2}$), $1.08(3 \mathrm{H}, \mathrm{d}, J 7.3,6-\mathrm{Me}), 1.25(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe} 2), 1.87\left(1 \mathrm{H}\right.$, dd, $J 6.6$ and $\left.12.2, \mathrm{NHCH}_{2} \mathrm{CH}\right), 1.9(1 \mathrm{H}$, br, NH; exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.96(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 12.2 , $\left.\mathrm{NHCH}_{2} \mathrm{CH}\right), 2.55(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.37$ and 3.48 (each 3 H , each $\mathrm{s}, 1-3-\mathrm{Me}), 4.22(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $1.9,5-\mathrm{H}), 4.25$ and 4.36 (each 1 H , each d, $\left.J 14.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45(1 \mathrm{H}$, ddd, $J 1.4,1.9$ and $9.8,7-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $9.8,8-\mathrm{H})$ and 7.2 and $7.3-$ 7.4 (total $5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.5,20.7$ and $21.0(6-\mathrm{Me}$ and CHMe 2), 28.1 and 28.5 (1-Me and CHMe_{2}), 35.3 and 37.1 (C-6 and $3-\mathrm{Me})$, 55.3 and $55.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{NHCH}_{2} \mathrm{CH}\right), 58.1(\mathrm{C}-5)$, 109.4 (C-7), 113.6 (C-4a), 126.5, 128.6, 128.8, 129.1 and 135.2 (C-8 and Ph C), 150.6 (C-9a), 153.2 (C-2) and 163.0 (C-4).

Isomer 7 b (minor): $\delta_{\mathbf{H}}(400 \mathrm{MHz}$) (assigned signals) 0.82 and 0.83 (each 3 H , each d, $\left.J 6.6, \mathrm{CH} M e_{2}\right), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.9$, $6-\mathrm{Me}), 1.53\left(1 \mathrm{H}\right.$, ov, $\left.\mathrm{CH} \mathrm{Me}_{2}\right), 1.75(1 \mathrm{H}$, dd, $J 5.6$ and 11.0 , $\left.\mathrm{NHCH}_{2}\right), 2.43(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, J 2.3,5-\mathrm{H}), 3.33$ and 3.44 (each 3 H , each s, 1 - and 3-Me), $4.16(1 \mathrm{H}, \mathrm{d}, J 14.2$, $\left.\mathrm{CH} \mathrm{C}_{2} \mathrm{Ph}\right), 4.86(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $8.2,7-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{ov}, 8-\mathrm{H})$ and $7.2-7.5(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ (assigned signals) 16.0 , $20.5,21.0,28.1,33.9,57.0,57.1,58.7,119.3,128.4,128.5,129.0$, 129.1, 136.4 and 163.4.

5-Anilino-1-benzyl-1,3-dimethyl-6-phenyl-6,9-dihydro-5H-pyrimido[4,5-b] azepine-2, $4(1 \mathrm{H}, 3 \mathrm{H})$-dione 8 a was obtained as plates from ethanol; m.p. $172-174^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.0$; $\mathrm{H}, 6.25$; $\mathrm{N}, 12.1 . \mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.92 ; \mathrm{H}, 6.28 ; \mathrm{N}, 12.06 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1700$ and $1630(\mathrm{CO}) ; m / z 464\left(\mathrm{M}^{+}\right)$.
Isomer 8a (major): $\delta_{\mathbf{H}}(400 \mathrm{MHz}) 3.42$ and 3.48 (each 3 H , each s, $1-$ and $3-\mathrm{Me}), 3.67(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{NH}$; exchanged with $\mathrm{D}_{2} \mathrm{O}$), $3.93(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.34(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}, \mathrm{Ph}), 4.87(1 \mathrm{H}$, ddd, $J 1.5,2.2$ and $10.3,7-\mathrm{H}), 5.37(1 \mathrm{H}$, ddd, $J 1.5,2.2$ and $8.3,5-\mathrm{H}$; changed to br after $\mathrm{D}_{2} \mathrm{O}$ treatment), $6.15(1 \mathrm{H}, \mathrm{ov}, 8-\mathrm{H})$ and $6.1-6.2,6.5$ and $6.9-7.4$ (total $15 \mathrm{H}, 3 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 28.7$ (1-Me), 35.7 (3-Me), 47.5 (C-6), $51.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2(\mathrm{C}-5), 108.4$ (C-7), 109.7 (C-4a), 113.0, 116.6, 126.7-131.2, 135.0, 142.9 and 146.7 (C-8 and Ph C), 151.8 (C-9a), 153.0 (C-2) and 162.5 (C-4).

Isomer $8 \mathbf{a}$ (minor): $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.08$ and 3.54 (each 3 H , each s, $1-$ and $3-\mathrm{Me}), 3.75(1 \mathrm{H}$, ddd, $J 1.5,2.4$ and $5.9,6-\mathrm{H})$, $4.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Ph}\right), 4.55(1 \mathrm{H}$, dd, $J 2.4$ and $10.3,5-\mathrm{H}$; changed to d after $\mathrm{D}_{2} \mathrm{O}$ treatment, $J 2.4$), $5.04(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $9.3,7-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $9.3,8-\mathrm{H})$ and $6.1-6.2$, $6.30,6.64$ and $6.9-7.4(\mathrm{NH}$ and Ph$) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 28.2(1-\mathrm{Me})$, 33.9 (3-Me), 46.3 (C-6), $53.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 57.7(\mathrm{C}-5), 103.7(\mathrm{C}-7)$, 113.0 (C-4a), 114.1, 117.0, 126.7-131.2, 136.4, 139.9 and 146.2 (C-8 and Ph C), 149.5 (C-9a), 152.8 (C-2) and 162.4 (C-4).

9-Benzyl-5-isobutylamino-1,3-dimethyl-6-phenyl-6,9-dihydro5 H -pyrimido [4,5-b] azepine-2,4(1H,3H)-dione 8 b was obtained as needles from hexane-benzene; m.p. $154-156^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.8 ; \mathrm{H}, 7.2 ; \mathrm{N}, 12.3 . \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.95 ; \mathrm{H}, 7.26$; $\mathrm{N}, 12.60 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3340(\mathrm{NH}), 1700$ and $1625(\mathrm{CO}) ; m / z$ $444\left(\mathrm{M}^{+}\right)$.

Isomer 8b (major): $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.46$ and 0.53 (each 3 H , each d, J 6.8, CHMe $)_{2}, 1.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{M}_{2}\right), 1.61(1 \mathrm{H}, \mathrm{br}$, NH), 1.7-1.9 (2 H , ov, $\mathrm{NCH}_{2} \mathrm{CH}$), 3.40 and 3.53 (each 3 H , each s, 1 - and $3-\mathrm{Me}$), $3.74(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.34$ and 4.48 (each 1 H, each d, $\left.J 14.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 4.84(1 \mathrm{H}$, ddd, J $1.7,2.2$ and $9.6,7-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $9.6,8-\mathrm{H})$ and 7.2-7.4 (10 H, Ph); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.3$ and $20.5\left(\mathrm{CHMe} e_{2}\right), 28.0$ (3-Me), 35.2 (1-Me), 28.8 (CHMe_{2}), $47.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.6(\mathrm{C}-6)$, 56.7 ($\mathrm{NHCH}_{2} \mathrm{CH}$), $58.0(\mathrm{C}-5), 109.3(\mathrm{C}-7), 110.9(\mathrm{C}-4 \mathrm{a}), 126.3-$ 130.9, 135.2 and 144.0 (C-8 and Ph C), 151.4 (C-9a), 153.0 (C-2) and 163.0 (C-4).

Isomer 8 b (minor): $\delta_{\mathbf{H}}(400 \mathrm{MHz}) 0.78$ and 0.83 (each 3 H , each d, J6.8, CHMe 2), $1.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}{ }_{2}\right), 1.7-1.8(2 \mathrm{H}, \mathrm{ov}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 2.93(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.06$ and 3.52 (each 3 H , each s, 1 - and $3-\mathrm{Me}), 3.44(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}), 4.28$ and 4.30 (each 1 H , each d, $\left.J 5.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.98(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $9.3,7-\mathrm{H}), 6.15(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and $9.3,8-\mathrm{H})$ and $7.0-7.4(10 \mathrm{H}$, ov, Ph$) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.7$ and $21.1\left(\mathrm{CHMe} 2_{2}\right), 28.0(1-\mathrm{Me})$, $28.6\left(\mathrm{CHMe}_{2}\right), 35.2(3-\mathrm{Me}), 50.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.8\left(\mathrm{NCH}_{2} \mathrm{CH}\right)$, 57.4 (C-6), 60.1 (C-5), 109.3 (C-7), 114.7 (C-4a), 126.3-130.9, 136.4 and $144.0(\mathrm{C}-8$ and Ph C$), 151.4(\mathrm{C}-9 \mathrm{a}), 153.2(\mathrm{C}-2)$ and 161.6 (C-4).

Ethyl 5-anilino-9-benzyl-1,3-dimethyl-2,4-dioxo-1,2,3,4,6,9-hexahydro-5H-pyrimido[4,5-b] azepine-6-carboxylate 9a was obtained as needles from hexane-benzene; m.p. $166-168^{\circ} \mathrm{C}$ (Found: C, 67.6; $\mathrm{H}, 6.2 ; \mathrm{N}, 11.8 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C , $67.81 ; \mathrm{H}, 6.13 ; \mathrm{N}, 12.17 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1730,1700$, 1680 and 1640 (CO).

Isomer 9a (major): $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.02(3 \mathrm{H}, \mathbf{t}, J 7.3$, $\mathrm{OCH}_{2} \mathrm{Me}$), 3.42 and 3.47 (each 3 H , each $\mathrm{s}, 1-$ and $3-\mathrm{Me}$), $3.5\left(1 \mathrm{H}\right.$, ov, NH ; exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.96(2 \mathrm{H}, \mathrm{q}, J 7.3$, $\mathrm{OCH}_{2} \mathrm{Me}$), 4.3 (total $3 \mathrm{H}, \mathrm{ov}, 6-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{Ph}$), 5.09 (1 H , ddd, $J 1.8,2.2$ and $10.3,7-\mathrm{H}), 5.95(1 \mathrm{H}$, ddd, $J 1.5,2.2$ and $9.3,5-\mathrm{H}$; changed to dd after $\mathrm{D}_{2} \mathrm{O}$ treatment, $J 1.5$ and 2.2$), 6.14(1 \mathrm{H}$, dd, $J 2.4$ and $10.3,8-\mathrm{H})$ and $6.3,6.6$ and $7.0-7.5(10 \mathrm{H}, \mathrm{Ph})$; $\delta_{\mathrm{C}}(67 \mathrm{MHz}) 13.9\left(\mathrm{CH}_{2} \mathrm{Me}\right), 28.7(1-\mathrm{Me}), 35.9(3-\mathrm{Me}), 47.2$ and $47.8\left(\mathrm{OCH}_{2} \mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.4(\mathrm{C}-6), 61.2(\mathrm{C}-5) 103.9(\mathrm{C}-7)$, 106.7 (C-4a), 113.5, 117.1, 128.9-129.4, 134.9 and 146.3 (C-8 and Ph C), 152.0 and 152.9 (C-2 and $-9 \mathrm{a}), 162.3$ (C-4) and 171.1 $\left(\mathrm{CO}_{2}\right)$.

Isomer 9a (minor): $\delta_{\mathbf{H}}(270 \mathrm{MHz})$ (assigned signals) 1.22 $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 3.35$ and 3.44 (1- and 3-Me), $4.10\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and 4.93 $(7-\mathrm{H}) ; \delta_{\mathrm{C}}(67 \mathrm{MHz})$ (assigned signals) $14.1,28.3,34.3,47.9,52.5$, $57.8,60.4,103.2,108.9,134.9$ and 146.0.

Acknowledgements

Financial support of this work by the Ministry of Education, Science, and Culture of Japan (Grant No. 03650705) is gratefully acknowledged. We also thank Professors M. Tashiro and S. Kanemasa of Kyushu University for measurements of elemental analyses and NMR spectra.

References

1 Part 12, T. Inazumi, K. Yamada, Y. Kuroki, A. Kakehi and M. Noguchi, preceding paper.

2 For recent reviews of ene reactions, see: (a) W. Oppolzer and V. Snieckus, Angew Chem., Int. Ed. Engl., 1978, 17, 476; (b) B. B. Snider, Acc. Chem. Res., 1980, 13, 426; (c) W. Oppolzer, Angew. Chem., Int. Ed. Engl., 1984, 23, 876.
3 K. R. Motion, I. R. Robertson, J. T. Sharp and M. D. Walkinshaw, J. Chem. Soc., Perkin Trans. 1, 1992, 1709. For a review of the 1,7-electrocyclic reaction, see: G. Zecchi, Synthesis, 1991, 181.
4 D. N. Reinhoudt, G. W. Visser, W. Verboom, P. T. Benders and M. L. M. Pennings, J. Am. Chem. Soc., 1983, 105, 4775.

5 O. Achmatowicz, Jr., and M. J. Pietraszkiewicz, J. Chem. Soc., Chem. Commun., 1976, 484; J. Chem. Soc., Perkin Trans. 1, 1981, 2680; D. M. B. Hickey, C. J. Moody and C. W. Rees, J. Chem. Soc., Chem. Commun., 1982, 1419; H. Brazmeier and G. Kresze, Synthesis, 1985,

683; D. M. Tschaen and S. M. Weinreb, Tetrahedron Lett., 1982, 23, 3015; D. M. Tschaen, E. Turos and S. M. Weinreb, J. Org. Chem., 1984, 49, 5058; J.-M. Lin, K. Koch and F. W. Fowler, J. Org. Chem., 1986, 51, 167. For examples of the ene-like reactions utilising iminium ion enophiles see ref. 6 .
6 T. Cohen and A. Onopchenko, J. Org. Chem., 1983, 48, 4531; T. Darbre, C. Nussbaumer and H.-J. Borschberg, Helv. Chim. Acta, 184, 67, 1040; K. Shishido, K. Fukumoto and T. Kametani

Tetrahedron Lett., 1986, 27, 1167; K. Shishido, K. Hiroya, K. Fukumoto and T. Kametani, J. Chem. Soc., Chem. Commun., 1987, 1360; M. J. Melnick, A. J. Freyer and S. M. Weinreb, Tetrahedron Lett., 1988, 29, 3891.

Paper 3/04950G
Received 16th August 1993
Accepted 18th October 1993

[^0]: ${ }^{a}$ Determined by the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures. ${ }^{b}$ Isolated yield.

